Effective degradation of oil pollutants in water by hydrodynamic cavitation combined with electrocatalytic membrane
نویسندگان
چکیده
منابع مشابه
Pollutant and Microorganism Removal From Water by Hydrodynamic Cavitation
Hydrodynamic cavitation can effectively remove organic pollutants and microorganisms from water. Organic compound degradation and water disinfection removal rate is related to reaction time and operating temperature. Removal rate can be improved by increasing the reaction time or raising the operating temperature. Under our experimental conditions, the removal rate of colority, COD and petroleu...
متن کاملPhotocatalytic Degradation of Organic Pollutants in Water
A photocatalyst is defined as a substance which is activated by adsorbing a photon and is capable of accelerating a reaction without being consumed [1]. These substances are invaria‐ bly semiconductors. Semiconducting oxide photocatalysts have been increasingly focused in recent years due to their potential applications in solar energy conversion and environmen‐ tal purification. Semiconductor ...
متن کاملUse of hydrodynamic cavitation in (waste)water treatment.
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and ...
متن کاملEffective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane
In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO₂ via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2018
ISSN: 2158-3226
DOI: 10.1063/1.5028152